Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 612
Filter
1.
BMC Infect Dis ; 24(1): 482, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730328

ABSTRACT

BACKGROUND: Haemophagocytic lymphohistiocytosis (HLH) is a syndrome that occurs in patients with severe systemic hyperinflammation. GATA binding protein 2 (GATA2) is a transcription factor and key component in haematopoiesis and stem cell biology. CASE PRESENTATION: Three patients with HLH, one with Mycobacterium avium infection, one with Epstein-Barr virus (EBV) infection, and one with Mycobacterium kansasii infection, were all subsequently found to have a defect in the GATA2 gene through genetic testing. CONCLUSIONS: GATA2 deficiency syndrome should be considered in patients with myelodysplastic syndrome, nontuberculous mycobacterium infection and HLH. In addition, the GATA2 gene variant may be a genetic defect that could be the cause of the primary HLH. However, further studies are needed to confirm the role of GATA2 pathogenic variants in the pathogenesis of HLH.


Subject(s)
GATA2 Deficiency , GATA2 Transcription Factor , Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/genetics , GATA2 Deficiency/genetics , GATA2 Deficiency/complications , Male , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/deficiency , Female , Epstein-Barr Virus Infections/complications , Adult
2.
Mol Med Rep ; 29(6)2024 06.
Article in English | MEDLINE | ID: mdl-38695236

ABSTRACT

During hematopoiesis, megakaryocytic erythroid progenitors (MEPs) differentiate into megakaryocytic or erythroid lineages in response to specific transcriptional factors, yet the regulatory mechanism remains to be elucidated. Using the MEP­like cell line HEL western blotting, RT­qPCR, lentivirus­mediated downregulation, flow cytometry as well as chromatin immunoprecipitation (ChIp) assay demonstrated that the E26 transformation­specific (ETS) transcription factor friend leukemia integration factor 1 (Fli­1) inhibits erythroid differentiation. The present study using these methods showed that while FLI1­mediated downregulation of GATA binding protein 1 (GATA1) suppresses erythropoiesis, its direct transcriptional induction of GATA2 promotes megakaryocytic differentiation. GATA1 is also involved in megakaryocytic differentiation through regulation of GATA2. By contrast to FLI1, the ETS member erythroblast transformation­specific­related gene (ERG) negatively controls GATA2 and its overexpression through exogenous transfection blocks megakaryocytic differentiation. In addition, FLI1 regulates expression of LIM Domain Binding 1 (LDB1) during erythroid and megakaryocytic commitment, whereas shRNA­mediated depletion of LDB1 downregulates FLI1 and GATA2 but increases GATA1 expression. In agreement, LDB1 ablation using shRNA lentivirus expression blocks megakaryocytic differentiation and modestly suppresses erythroid maturation. These results suggested that a certain threshold level of LDB1 expression enables FLI1 to block erythroid differentiation. Overall, FLI1 controlled the commitment of MEP to either erythroid or megakaryocytic lineage through an intricate regulation of GATA1/GATA2, LDB1 and ERG, exposing multiple targets for cell fate commitment and therapeutic intervention.


Subject(s)
Cell Differentiation , GATA1 Transcription Factor , GATA2 Transcription Factor , Megakaryocytes , Proto-Oncogene Protein c-fli-1 , Transcriptional Regulator ERG , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Protein c-fli-1/genetics , GATA1 Transcription Factor/metabolism , GATA1 Transcription Factor/genetics , Humans , Cell Differentiation/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Megakaryocytes/metabolism , Megakaryocytes/cytology , Transcriptional Regulator ERG/metabolism , Transcriptional Regulator ERG/genetics , Erythroid Cells/metabolism , Erythroid Cells/cytology , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Gene Expression Regulation , Cell Line
3.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653778

ABSTRACT

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Neoplastic , Neuroblastoma , SOXC Transcription Factors , Tretinoin , Neuroblastoma/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Humans , Animals , Cell Line, Tumor , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Cell Lineage/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , CRISPR-Cas Systems , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 335-341, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660833

ABSTRACT

OBJECTIVE: To analyze the occurrence of concomitant gene mutations in cytogenetically normal acute myeloid leukemia (CN-AML) patients with CEBPA mutation and its impact on the clinical characteristics and prognosis of the patients. METHODS: 151 newly diagnosed patients with CN-AML in the Second Hospital of Shanxi Medical University from June 2013 to June 2020 were analyzed retrospectively. 34 common genetic mutations associated with hematologic malignancies were detected by next-generation sequencing technology. The occurrence of concomitant gene mutations in patients with CEBPA positive and negative groups was compared, and the correlation between concomitant mutations in different functional groups and the clinical characteristics and prognosis of CN-AML patients with CEBPA mutation was analyzed. RESULTS: In 151 patients with CN-AML, 55 (36.42%) were positive for CEBPA mutation (including 36 cases of CEBPAdm and 19 cases of CEBPAsm), of which 41 (74.55%) had co-mutations with other genes. The main mutated genes were GATA2 (25.45%, 14/55), TET2 (21.82%, 12/55), FLT3 (20.00%, 11/55), NRAS (12.73%, 7/55) and WT1 (9.09%, 9/55), etc. Some cases had two or more concomitant gene mutations. Grouping the mutant genes according to their functions showed that CEBPA+ group had lower mutation rates of histone methylation (P =0.002) and chromatin modification genes (P =0.002, P =0.033), and higher mutation rates of transcription factors (P =0.037) than CEBPA- group. In 55 patients with CEBPA+ CN-AML, the platelet count at diagnosis in signaling pathway gene mutation-positive group was lower than that in the mutation-negative group (P =0.005), the proportion of bone marrow blasts in transcription factor mutation-positive group was higher than that in the mutation-negative group (P =0.003), and the onset age in DNA methylation gene mutation-positive group and chromatin modifier mutation-positive group was older than that in the mutation-negative group, respectively (P =0.002, P =0.008). DFS of CEBPA+ CN-AML patients in signaling pathway gene mutation group was shorter than that in signaling pathway gene mutation-negative group (median DFS: 12 months vs not reached) (P =0.034). Compared with DNA methylation gene mutation-negative group, CEBPA+ CN-AML patients with DNA methylation gene mutation had lower CR rate (P =0.025) significantly shorter OS and DFS (median OS: 20 months vs not reached, P =0.006; median DFS: 15 months vs not reached, P =0.049). OS in patients with histone methylation gene mutation was significantly shorter than that in the histone methylation gene mutation-negative group (median OS: 12 months vs 40 months) (P =0.008). Multivariate analysis of prognostic factors showed that the proportion of bone marrow blasts (P =0.046), concomitant DNA methylation gene mutation (P =0.006) and histone methylation gene mutation (P =0.036) were independent risk factors affecting the prognosis. CONCLUSION: CN-AML patients with CEBPA mutation have specific concomitant gene profile, and the concomitant mutations of different functional genes have a certain impact on the clinical characteristics and prognosis of the patients.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Leukemia, Myeloid, Acute , Mutation , Humans , Leukemia, Myeloid, Acute/genetics , CCAAT-Enhancer-Binding Proteins/genetics , Retrospective Studies , Prognosis , Dioxygenases , GATA2 Transcription Factor/genetics , DNA-Binding Proteins/genetics , Proto-Oncogene Proteins/genetics , WT1 Proteins/genetics , Male , Female , Clinical Relevance
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 327-334, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660832

ABSTRACT

OBJECTIVE: To investigate the clinical characteristics, coexisting gene mutations and prognosis of acute myeloid leukemia (AML) patients with GATA2 gene mutation. METHODS: The clinical data of 370 newly diagnosed AML patients treated in our hospital from January 2008 to January 2021 was analyzed retrospectively, the next-generation sequencing technology was used to detect the mutated genes in those patients. The clinical characteristics of AML patients with GATA2 mutations, the co-mutated genes of GATA2 mutations, and the effect of GATA2 mutation on prognosis were analyzed. RESULTS: A total of 23 patients (6.2%) with GATA2 mutation was detected in 370 AML patients. Compared with GATA2 non-mutation group, patients in GATA2 mutation group were mostly normal karyotypes (P =0.037) and in low-risk cytogenetic stratification (P =0.028). The incidence of CEBPAdm and NRAS in GATA2 mutation group was significantly higher than that in GATA2 non-mutation group (P =0.010, P =0.009). There were no statistically significant differences between the two groups in terms of sex, age, white blood cell count (WBC), platelet count, hemoglobin, bone marrow (BM) blast, induction chemotherapy regimen and CR rate (P >0.05). Among the 23 patients with GATA2 mutation, the most common co-mutated genes were CEBPAdm, NRAS (both 39.1%), NPM1, FLT3, TET2, WT1 (all 17.4%), ASXL1 and IDH1 (both 13.0%). Survival analysis showed that there was no statistical difference in 5-year overall survival (OS) and leukemia-free survival (LFS) rates between patients with and without GATA2 mutations in whole cohort (n=370) (P =0.306, P =0.308). Among 306 patients without CEBPAdm, the 5-year OS and LFS rates in GATA2 mutation group showed an increasing trend compared with GATA2 non-mutation group, but the difference was not statistically significant (P =0.092, P =0.056). Among 64 patients with CEBPAdm, there was no statistically significant difference in 5-year OS rate between the GATA2 mutation group and the GATA2 non-mutation group (P =0.104), but the 5-year LFS rate of the GATA2 mutation group was significantly decreased (P =0.047). Among the 23 patients with GATA2 mutation, 16 cases received the "3+7" induction regimen, of which 12 cases received allogeneic hematopoietic stem cell transplantation (allo-HSCT); 7 cases received the "DCAG" induction regimen, of which 3 cases received allo-HSCT. The CR rate was not statistically different between the "3+7" regimen group and the "DCAG" regimen group (P =1.000). The 5-year OS rate and LFS rate in the transplantation group were significantly higher than the chemotherapy group (P =0.021, P =0.020). CONCLUSION: GATA2 mutation is more common in AML patients with normal karyotype and low-risk cytogenetic stratification, and it is significantly associated with CEBPAdm and NRAS co-mutations. The prognostic significance of GATA2 is influenced by CEBPAdm. The choice of "3+7" or "DCAG" induction regimen in patients with GATA2 mutation does not affect their CR rate, while the choice of allo-HSCT can significantly improved the prognosis compared with chemotherapy only.


Subject(s)
DNA-Binding Proteins , GATA2 Transcription Factor , Leukemia, Myeloid, Acute , Membrane Proteins , Mutation , Nucleophosmin , Repressor Proteins , Humans , GATA2 Transcription Factor/genetics , Leukemia, Myeloid, Acute/genetics , Prognosis , Retrospective Studies , CCAAT-Enhancer-Binding Proteins/genetics , Dioxygenases , GTP Phosphohydrolases/genetics , Male , Female
6.
Proc Natl Acad Sci U S A ; 121(18): e2317690121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648485

ABSTRACT

The underlying mechanism(s) by which the PML::RARA fusion protein initiates acute promyelocytic leukemia is not yet clear. We defined the genomic binding sites of PML::RARA in primary mouse and human hematopoietic progenitor cells with V5-tagged PML::RARA, using anti-V5-PML::RARA chromatin immunoprecipitation sequencing and CUT&RUN approaches. Most genomic PML::RARA binding sites were found in regions that were already chromatin-accessible (defined by ATAC-seq) in unmanipulated, wild-type promyelocytes, suggesting that these regions are "open" prior to PML::RARA expression. We found that GATA binding motifs, and the direct binding of the chromatin "pioneering factor" GATA2, were significantly enriched near PML::RARA binding sites. Proximity labeling studies revealed that PML::RARA interacts with ~250 proteins in primary mouse hematopoietic cells; GATA2 and 33 others require PML::RARA binding to DNA for the interaction to occur, suggesting that binding to their cognate DNA target motifs may stabilize their interactions. In the absence of PML::RARA, Gata2 overexpression induces many of the same epigenetic and transcriptional changes as PML::RARA. These findings suggested that PML::RARA may indirectly initiate its transcriptional program by activating Gata2 expression: Indeed, we demonstrated that inactivation of Gata2 prior to PML::RARA expression prevented its ability to induce self-renewal. These data suggested that GATA2 binding creates accessible chromatin regions enriched for both GATA and Retinoic Acid Receptor Element motifs, where GATA2 and PML::RARA can potentially bind and interact with each other. In turn, PML::RARA binding to DNA promotes a feed-forward transcriptional program by positively regulating Gata2 expression. Gata2 may therefore be required for PML::RARA to establish its transcriptional program.


Subject(s)
GATA2 Transcription Factor , Hematopoietic Stem Cells , Oncogene Proteins, Fusion , Animals , Humans , Mice , Binding Sites , Cell Self Renewal , Chromatin/metabolism , DNA/metabolism , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Hematopoietic Stem Cells/metabolism , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/genetics , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , Protein Binding , Retinoic Acid Receptor alpha/metabolism , Retinoic Acid Receptor alpha/genetics
7.
Proc Natl Acad Sci U S A ; 121(10): e2317147121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38422019

ABSTRACT

Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.


Subject(s)
Leukemia , Regulatory Sequences, Nucleic Acid , Humans , Cell Differentiation/genetics , Genotype , Hematopoietic Stem Cells , GATA2 Transcription Factor/genetics
9.
J Biochem ; 175(5): 551-560, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38168819

ABSTRACT

Lymphedema has become a global health issue following the growing number of cancer surgeries. Curative or supportive therapeutics have long been awaited for this refractory condition. Transcription factor GATA2 is crucial in lymphatic development and maintenance, as GATA2 haploinsufficient disease often manifests as lymphedema. We recently demonstrated that Gata2 heterozygous deficient mice displayed delayed lymphatic recanalization upon lymph node resection. However, whether GATA2 contributes to lymphatic regeneration by functioning in the damaged lymph vessels' microenvironment remains explored. In this study, our integrated analysis demonstrated that dermal collagen fibers were more densely accumulated in the Gata2 heterozygous deficient mice. The collagen metabolism-related transcriptome was perturbed, and collagen matrix contractile activity was aberrantly increased in Gata2 heterozygous embryonic fibroblasts. Notably, soluble collagen placement ameliorated delayed lymphatic recanalization, presumably by modulating the stiffness of the extracellular matrix around the resection site of Gata2 heterozygous deficient mice. Our results provide valuable insights into mechanisms underlying GATA2-haploinsufficiency-mediated lymphedema and shed light on potential therapeutic avenues for this intractable disease.


Subject(s)
Collagen , GATA2 Transcription Factor , Heterozygote , Lymphedema , Animals , Mice , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Lymphedema/metabolism , Lymphedema/genetics , Lymphedema/pathology , Collagen/metabolism , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Mice, Knockout , Haploinsufficiency , GATA2 Deficiency/metabolism , GATA2 Deficiency/genetics , Mice, Inbred C57BL
10.
F S Sci ; 5(1): 92-103, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37972693

ABSTRACT

OBJECTIVE: To study the effect of adenomyosis on the localized expression of the GATA binding proteins 2 and 6 (GATA2 and GATA6) zinc-finger transcription factors that are involved in proliferation of hematopoietic and endocrine cell lineages, cell differentiation, and organogenesis, potentially leading to impaired endometrial implantation. DESIGN: Laboratory based experimental study. SETTING: Academic hospital and laboratory. PATIENTS: Human endometrial stromal cells (HESCs) of reproductive age patients, 18-45 years of age, with adenomyosis were compared with patients with no pathology and leiomyomatous uteri as controls (n = 4 in each group, respectively). Additionally, midsecretory phase endometrial sections were obtained from patients with adenomyosis and control patients with leiomyoma (n = 8 in each group, respectively). INTERVENTIONS: GATA2 and GATA6 immunohistochemistry and H-SCORE were performed on the midsecretory phase endometrial sections from adenomyosis and leiomyoma control patients (n = 8 each, respectively). Control and adenomyosis patient HESC cultures were treated with placebo or 10-8 M estradiol (E2), or decidualization media (EMC) containing 10-8 M E2, 10-7 M medroxyprogesterone acetate, and 5 × 10-5 M cAMP for 6 and 10 days. Additionally, control HESC cultures (n = 4) were transfected with scrambled small interfering RNA (siRNA) (control) or GATA2-specific siRNAs for 6 days while adenomyosis HESC cultures (n = 4) were transfected with human GATA2 expression vectors to silence or induce GATA2 overexpression. MAIN OUTCOME MEASURES: Immunohistochemistry was performed to obtain GATA2 and GATA6 H-SCORES in adenomyosis vs. control patient endometrial tissue. Expression of GATA2, GATA6, insulin-like growth factor-binding protein 1 (IGFBP1), prolactin (PRL), progesterone receptor (PGR), estrogen receptor 1 (ESR1), leukemia inhibitory factor (LIF), and Interleukin receptor 11 (IL11R) messenger RNA (mRNA) levels were analyzed using by qPCR with normalization to ACTB. Silencing and overexpression experiments also had the corresponding mRNA levels of the above factors analyzed. Western blot analysis was performed on isolated proteins from transfection experiments. RESULTS: Immunohistochemistry revealed an overall fourfold lower GATA2 and fourfold higher GATA6 H-SCORE level in the endometrial stromal cells of patients with adenomyosis vs. controls. Decidual induction with EMC resulted in significantly lower GATA2, PGR, PRL and IGFBP1 mRNA levels in HESC cultures from patients with adenomyosis patient vs. controls. Leukemia inhibitory factor and IL11R mRNA levels were also significantly dysregulated in adenomyosis HESCs compared with controls. . Silencing of GATA2 expression in control HESCs induced an adenomyosis-like state with significant reductions in GATA2, increases in GATA6 and accompanying aberrations in PGR, PRL, ESR1 and LIF levels. Conversely, GATA2 overexpression via vector in adenomyosis HESCs caused partial restoration of the defective decidual response with significant increases in GATA2, PGR, PRL and LIF expression. CONCLUSION: In-vivo and in-vitro experiment results demonstrate that there is an overall inverse relationship between endometrial GATA2 and GATA6 levels in patients with adenomyosis who have diminished GATA2 levels and concurrently elevated GATA6 levels. Additionally, lower GATA2 and higher GATA6 levels, together with aberrant levels of important receptors and implantation factors, such as ESR1, PGR, IGFBP1, PRL, LIF, and IL11R mRNA in HESCs from patients with adenomyosis or GATA2-silenced control HESCs, support impaired decidualization. These effects were partially restored with GATA2 overexpression in adenomyosis HESCs, demonstrating a potential therapeutic target.


Subject(s)
Adenomyosis , GATA2 Transcription Factor , GATA6 Transcription Factor , Adolescent , Adult , Female , Humans , Middle Aged , Young Adult , Adenomyosis/genetics , Adenomyosis/metabolism , Adenomyosis/pathology , Decidua/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/pharmacology , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/pharmacology , Leiomyoma , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/pharmacology , Prolactin/metabolism , Prolactin/pharmacology , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Transcription Factors
13.
J Pineal Res ; 76(1): e12918, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814536

ABSTRACT

Endometrial cancer (EC) is a reproductive system disease that occurs in perimenopausal and postmenopausal women. However, its etiology is unclear. Melatonin (MT) has been identified as a therapeutic agent for EC; however, its exact mechanism remains unclear. In the present study, we determined that GATA-binding protein 2 (GATA2) is expressed at low levels in EC and regulated by MT. MT upregulates the expression of GATA2 through MT receptor 1A (MTNR1A), whereas GATA2 can promote the expression of MTNR1A by binding to its promoter region. In addition, in vivo and in vitro experiments showed that MT inhibited the proliferation and metastasis of EC cells by upregulating GATA2 expression. The protein kinase B (AKT) pathway was also affected. In conclusion, these findings suggest that MT and GATA2 play significant roles in EC development.


Subject(s)
Endometrial Neoplasms , Melatonin , Humans , Female , Melatonin/pharmacology , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Cell Proliferation , Cell Line, Tumor
14.
Blood Adv ; 8(1): 80-92, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38029365

ABSTRACT

ABSTRACT: GATA binding protein 2 (GATA2) is a conserved zinc finger transcription factor that regulates the emergence and maintenance of complex genetic programs driving development and function of hematopoietic stem and progenitor cells (HSPCs). Patients born with monoallelic GATA2 mutations develop myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML), whereas acquired GATA2 mutations are reported in 3% to 5% of sporadic AML cases. The mechanisms by which aberrant GATA2 activity promotes MDS and AML are incompletely understood. Efforts to understand GATA2 in basic biology and disease will be facilitated by the development of broadly efficacious antibodies recognizing physiologic levels of GATA2 in diverse tissue types and assays. Here, we purified a polyclonal anti-GATA2 antibody and generated multiple highly specific anti-GATA2 monoclonal antibodies, optimized them for immunohistochemistry on patient bone marrow bioosy samples, and analyzed GATA2 expression in adults with healthy bone marrow, MDS, and acute leukemia. In healthy bone marrow, GATA2 was detected in mast cells, subsets of CD34+ HSPCs, E-cadherin-positive erythroid progenitors, and megakaryocytes. In MDS, GATA2 expression correlates with bone marrow blast percentage, positively correlates with myeloid dysplasia and complex cytogenetics, and is a nonindependent negative predictor of overall survival. In acute leukemia, the percent of GATA2+ blasts closely associates with myeloid lineage, whereas a subset of lymphoblastic and undifferentiated leukemias with myeloid features also express GATA2. However, the percent of GATA2+ blasts in AML is highly variable. Elevated GATA2 expression in AML blasts correlates with peripheral neutropenia and complex AML cytogenetics but, unlike in MDS, does not predict survival.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Adult , Humans , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Bone Marrow/metabolism , Acute Disease , Cytogenetic Analysis
15.
Aging (Albany NY) ; 15(24): 14996-15024, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38126976

ABSTRACT

Drug resistance in breast cancer (BC) is a clinical challenge. Exploring the mechanism and identifying a precise predictive biomarker for the drug resistance in BC is critical. Three first-line drug (paclitaxel, doxorubicin and tamoxifen) resistance datasets in BC from GEO were merged to obtain 1,461 differentially expressed genes for weighted correlation network analysis, resulting in identifying ATRX as the hub gene. ATRX is a chromatin remodelling protein, therefore, ATRX-associated transcription factors were explored, thereby identifying the network of AR, GLI3 and GATA2. GO and KEGG analyses revealed immunity, transcriptional regulation and endocrinotherapy/chemotherapy resistance were enriched. Moreover, CIBERSORT revealed immunity regulation was inhibited in the resistance group. ssGSEA showed a significantly lower immune status in the ATRX-Low group compared to the ATRX-High group. Furthermore, the peaks of H3K9me3 ChIP-seq on the four genes were higher in normal tissues than in BC tissues. Notably, the frequency of ATRX mutation was higher than BRCA in BC. Moreover, depressed ATRX revealed worse overall survival and disease-free survival in the human epidermal growth factor receptor 2 (HER2)-/hormone receptor (HR)+ BC. Additionally, depressed ATRX predicted poor results for patients who underwent endocrinotherapy or chemotherapy in the HER2-/HR+ BC subgroup. A nomogram based on ATRX, TILs and ER exhibited a significantly accurate survival prediction ability. Importantly, overexpression of ATRX significantly inhibited the IC50 of the three first-line drugs on MCF-7 cell. Thus, ATRX is an efficient predictive biomarker for endocrinotherapy and chemotherapy resistance in HER2-/HR+ BC and acts by suppressing the AR, GLI3 and GATA2 transcriptional network.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , X-linked Nuclear Protein , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Doxorubicin/therapeutic use , GATA2 Transcription Factor/genetics , Gene Regulatory Networks , Nerve Tissue Proteins , Paclitaxel/therapeutic use , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Tamoxifen/therapeutic use , X-linked Nuclear Protein/genetics , Zinc Finger Protein Gli3 , Drug Resistance, Neoplasm/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
16.
Cell Rep ; 42(11): 113454, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37976160

ABSTRACT

Previous studies of the murine Ly49 and human KIR gene clusters implicated competing sense and antisense promoters in the control of variegated gene expression. In the current study, an examination of transcription factor genes defines an abundance of convergent and divergent sense/antisense promoter pairs, suggesting that competing promoters may control cell fate determination. Differentiation of CD34+ hematopoietic progenitors in vitro shows that cells with GATA1 antisense transcription have enhanced GATA2 transcription and a mast cell phenotype, whereas cells with GATA2 antisense transcription have increased GATA1 transcripts and an erythroblast phenotype. Detailed analyses of the AHR and RORC genes demonstrate the ability of competing promoters to act as binary switches and the association of antisense transcription with an immature/progenitor cell phenotype. These data indicate that alternative cell fates generated by promoter competition in lineage-determining transcription factors contribute to the programming of cell differentiation.


Subject(s)
GATA1 Transcription Factor , Transcription Factors , Mice , Humans , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation/genetics , Promoter Regions, Genetic/genetics , GATA1 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism
17.
Blood Adv ; 7(24): 7564-7575, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37871305

ABSTRACT

Germline genetic variants alter the coding and enhancer sequences of GATA2, which encodes a master regulator of hematopoiesis. The conserved murine Gata2 enhancer (+9.5) promotes hematopoietic stem cell (HSC) genesis during embryogenesis. Heterozygosity for a single-nucleotide Ets motif variant in the human enhancer creates a bone marrow failure and acute myeloid leukemia predisposition termed GATA2 deficiency syndrome. The homozygous murine variant attenuates chemotherapy- and transplantation-induced hematopoietic regeneration, hematopoietic stem and progenitor cell (HSPC) response to inflammation, and HSPC mobilization with the therapeutic mobilizer granulocyte colony-stimulating factor (G-CSF). Because a Gata2 +9.5 variant attenuated G-CSF-induced HSPC expansion and mobilization, and HSC transplantation therapies require efficacious mobilization, we tested whether variation affects mechanistically distinct mobilizers or only those operating through select pathways. In addition to affecting G-CSF activity, Gata2 variation compromised IL-8/CXCR2- and VLA-4/VCAM1-induced mobilization. Although the variation did not disrupt HSPC mobilization mediated by plerixafor, which functions through CXCR4/CXCL12, homozygous and heterozygous variation attenuated mobilization efficacy of the clinically used plerixafor/G-CSF combination. The influence of noncoding variation on HSPC mobilization efficacy and function is important clinically because comprehensive noncoding variation is not commonly analyzed in patients. Furthermore, our mobilization-defective system offers unique utility for elucidating fundamental HSPC mechanisms.


Subject(s)
GATA2 Transcription Factor , Hematopoietic Stem Cell Transplantation , Heterocyclic Compounds , Animals , Mice , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Genetic Variation , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/metabolism , Heterocyclic Compounds/pharmacology
18.
Nat Commun ; 14(1): 6185, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794021

ABSTRACT

The myeloid transcription factor CEBPA is recurrently biallelically mutated (i.e., double mutated; CEBPADM) in acute myeloid leukemia (AML) with a combination of hypermorphic N-terminal mutations (CEBPANT), promoting expression of the leukemia-associated p30 isoform, and amorphic C-terminal mutations. The most frequently co-mutated genes in CEBPADM AML are GATA2 and TET2, however the molecular mechanisms underlying this co-mutational spectrum are incomplete. By combining transcriptomic and epigenomic analyses of CEBPA-TET2 co-mutated patients with models thereof, we identify GATA2 as a conserved target of the CEBPA-TET2 mutational axis, providing a rationale for the mutational spectra in CEBPADM AML. Elevated CEBPA levels, driven by CEBPANT, mediate recruitment of TET2 to the Gata2 distal hematopoietic enhancer thereby increasing Gata2 expression. Concurrent loss of TET2 in CEBPADM AML induces a competitive advantage by increasing Gata2 promoter methylation, thereby rebalancing GATA2 levels. Of clinical relevance, demethylating treatment of Cebpa-Tet2 co-mutated AML restores Gata2 levels and prolongs disease latency.


Subject(s)
Dioxygenases , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/pathology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Mutation , Regulatory Sequences, Nucleic Acid , Promoter Regions, Genetic/genetics , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism
19.
Front Immunol ; 14: 1191757, 2023.
Article in English | MEDLINE | ID: mdl-37680631

ABSTRACT

Haploinsufficiency of GATA2, also known as GATA2 deficiency, leads to a wide spectrum of clinical manifestations. Here we described another 28-year-old man with a GATA2 variant who also suffered from hemophagocytic lymphohistiocytosis(HLH), who was finally diagnosed with HLH triggered by Mycobacterium avium bloodstream infection due to primary immunodeficiency. We reviewed GATA2 deficiency patients with HLH and found that GATA2 variants causing loss of zinc finger domains were associated with HLH, and erythema nodosa might be an accompanying symptom.


Subject(s)
GATA2 Deficiency , Lymphohistiocytosis, Hemophagocytic , Mycobacterium avium-intracellulare Infection , Male , Humans , Adult , GATA2 Deficiency/complications , GATA2 Deficiency/diagnosis , GATA2 Deficiency/genetics , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/genetics , Mycobacterium avium-intracellulare Infection/complications , Mycobacterium avium-intracellulare Infection/diagnosis , Haploinsufficiency , Zinc Fingers/genetics , GATA2 Transcription Factor/genetics
20.
Mycoses ; 66(12): 1029-1034, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37550272

ABSTRACT

Germline pathogenic variants (PVs) in the gene encoding the GATA2 transcription factor can result in profound reductions of monocytes, dendritic cells, natural killer cells and B cells. GATA2 PVs are associated with an increased risk of myeloid malignancies and a predisposition to nontuberculous mycobacterial and human papillomavirus infections. Additionally, invasive fungal infections (IFIs) have been reported in individuals with GATA2 PVs, even in the absence of myeloid malignancies. In this report, we present the case of a 40-year-old man with Emberger syndrome (GATA2 mutation, recently diagnosed acute myeloid leukaemia [AML] and history of lymphedema with hearing loss) who developed Mucorales sinusitis while receiving his first course of remission induction chemotherapy. Additionally, we review the literature on all published cases of proven IFIs in patients with GATA2 PVs. Clinicians should be aware that patients with GATA2 PVs could be vulnerable to opportunistic IFIs, even in the absence of AML and antineoplastic therapy. Furthermore, the distinctly unusual occurrence of mucormycosis during the first course of induction chemotherapy for AML in our patient indicates that patients with germline GATA2 PVs receiving induction chemotherapy for AML might be at high risk for early onset of IFIs due to aggressive, opportunistic moulds.


Subject(s)
GATA2 Deficiency , Invasive Fungal Infections , Leukemia, Myeloid, Acute , Mucorales , Male , Humans , Adult , GATA2 Deficiency/complications , GATA2 Deficiency/diagnosis , GATA2 Deficiency/genetics , Leukemia, Myeloid, Acute/complications , Leukemia, Myeloid, Acute/genetics , Mutation , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/drug therapy , GATA2 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...